First Promise for Limb Re-rowth in Mammals
- Christopher
- Posts: 845
- Joined: Wed Jun 18, 2003 10:09 pm
- Injury Description, Date, extent, surgical intervention etc: Date of Injury: 12/15/02
Level of Injury:
-dominant side C5, C6, & C7 avulsed. C8 & T1 stretched & crushed
BPI Related Surgeries:
-2 Intercostal nerves grafted to Biceps muscle,
-Free-Gracilis muscle transfer to Biceps Region innervated with 2 Intercostal nerves grafts.
-2 Sural nerves harvested from both Calves for nerve grafting.
-Partial Ulnar nerve grafted to Long Triceps.
-Uninjured C7 Hemi-Contralateral cross-over to Deltoid muscle.
-Wrist flexor tendon transfer to middle, ring, & pinky finger extensors.
Surgical medical facility:
Brachial Plexus Clinic at The Mayo Clinic, Rochester MN
(all surgeries successful)
"Do what you can, with what you have, where you are."
~Theodore Roosevelt - Location: Los Angeles, California USA
First Promise for Limb Re-rowth in Mammals
http://www.sciencedaily.com/releases/20 ... 122207.htm
Simple Chemical Cocktail Shows First Promise for Limb Re-Growth in Mammals
Newt. Just as injured newts can sprout new limbs, a simple chemical cocktail shows promise for limb re-growth in mammals. It nudges mouse cells on a path toward regeneration.
ScienceDaily (Apr. 8, 2011) — Move over, newts and salamanders. The mouse may join you as the only animal that can re-grow their own severed limbs. Researchers are reporting that a simple chemical cocktail can coax mouse muscle fibers to become the kinds of cells found in the first stages of a regenerating limb.
Their study, the first demonstration that mammal muscle can be turned into the biological raw material for a new limb, appears in the journal ACS Chemical Biology.
Darren R. Williams and Da-Woon Jung say their "relatively simple, gentle, and reversible" methods for creating the early stages of limb regeneration in mouse cells "have implications for both regenerative medicine and stem cell biology." In the future, they suggest, the chemicals they use could speed wound healing by providing new cells at the injured site before the wound closes or becomes infected. Their methods might also shed light on new ways to switch adult cells into the all-purpose, so-called "pluripotent," stem cells with the potential for growing into any type of tissue in the body.
The scientists describe the chemical cocktail that they developed and used to turn mouse muscle fibers into muscle cells. Williams and Jung then converted the muscle cells turned into fat and bone cells. Those transformations were remarkably similar to the initial processes that occur in the tissue of newts and salamanders that is starting to regrow severed limbs.